M1. (a) (i) chlorotrifluoromethane Spelling must be correct but do not penalise "flouro" Ignore use of 1–

(ii) CF₃•
 May be drawn out with dot on C
 OR if as shown dot may be anywhere

(iii) An unpaired/non-bonded/unbonded/free/a single/one/lone electron

NOT "bonded electron" and NOT "paired electron" NOT "pair of electrons" NOT "electron<u>s</u>" Ignore "(free) radical"

(b) M1 $Cl \cdot + O_3 \rightarrow ClO \cdot + O_2$

 $\mathbf{M2} \quad \mathbf{ClO}\bullet + \mathbf{O}_3 \rightarrow \mathbf{2O}_2 + \mathbf{Cl}\bullet$

Mark independently Equations could gain credit in either position The dot can be anywhere on either radical Penalise the absence of a dot on the first occasion that it is seen and then mark on. Do <u>not</u> make the same penalty in the next equation, but penalise the absence of a dot on the other radical. Apply the list principle for additional equations

2

1

1

1

 (c) (i) (If any factor is changed which affects an <u>equilibrium</u>), the (position of) <u>equilibrium</u> will <u>shift/move</u> so as to <u>oppose</u> <u>the change</u>.

OR

(When a system/reaction in <u>equilibrium</u> is disturbed), the <u>equilibrium</u> <u>shifts/moves</u> in a direction which tends to <u>reduce the disturbance</u> Must refer to <u>equilibrium</u> Ignore reference to "system" alone A variety of wording will be seen here and the key part is the last phrase. An alternative to shift/move would be the idea of <u>changing/altering the position</u> of equilibrium

- (ii) M1 The (forward) reaction/to the right is <u>endothermic</u> or <u>takes in heat</u>
 - **OR** The reverse reaction/to the left is <u>exothermic</u> or <u>gives out heat</u>
 - M2 The <u>equilibrium moves/shifts</u> to <u>oppose the increase in temperature</u>
 M2 depends on a correct statement for M1
 For M2 accept
 The <u>equilibrium moves/shifts</u>
 to <u>take in heat/lower the temperature</u>
 to promote the endothermic reaction and <u>take in heat/</u> lower the temperature
 - to oppose the change and <u>take in heat/lower</u>
 <u>temperature</u>
 - (leading to the formation of more ozone)

1

1

- (d) Any one of
 - Pentane does not contain chlorine OR C-Cl (bond)
 - Pentane is <u>chlorine-free</u>
 - Pentane <u>does not release chlorine</u> (atoms/radicals) Ignore reference to F OR C–F OR halogen Ignore "Pentane is not a CFC" Ignore "Pentane is a hydrocarbon" Ignore "Pentane only contains C and H" Ignore "Pentane is C₈H₁₂"

M2.	(a	a)	M1 (Free-) radical substitution Both words needed	1
	Γ	M2	$Cl_2 \rightarrow 2Cl \bullet$	1
	Γ	М3	$CI \bullet + CH_4 \rightarrow \bullet CH_3 + HCI$	1
	Γ	M4	$CI_2 + \bullet CH^3 \rightarrow CH_3CI + CI \bullet$	1
	Γ	M5	$CH_4 + 3CI_2 \rightarrow CHCI_3 + 3HCI$ Penalise the absence of a radical dot once only Ignore termination steps except, if and only if <u>both</u> M3 and M4 do not score, then accept for one mark $CI_2 + CH_3 \rightarrow CH_3CI$	1
	(b)	M 1	UV (light)/ sunlight / light / UV radiation	
	r	M2	C-CI or <u>carbon-chlorine</u> bond breakage OR homolysis of <u>C-CI</u> OR equation to show a chlorine-containing organic compound forming two radicals For M1 and M2, ignore use of CI₂, but credit UV and C-CI bond breakage if seen	1
	Γ	М3	$CI \bullet + O_3 \rightarrow CIO \bullet + O_2$	1
	Γ	M4	$CIO \bullet + O_3 \rightarrow CI \bullet + 2O_2$ Ignore other equations Penalise the absence of a radical dot once only Accept radical dot anywhere on either radical.	1
	Γ	M5	Any <u>one</u> from	
			 Combination 2O₃ → 3O₂ <u>Stated</u> that Cl• / chlorine atom is regenerated / not used up <u>Stated</u> that the Cl• / chlorine atom is unaffected by the process. <i>For M5 accept Cl• on <u>both sides</u> of the equation</i> 	1

M6 <u>Stated</u> that the role of the Cl• / chlorine atom is to find an alternative route **OR** lower E_a / activation energy

deplete / react with the ozone (layer)

Halothane contains C-CI / CI (c) M1 OR Desflurane does not contain C-Cl bonds / Cl OR Desflurane contains C-F / F as the only halogen Mark independently. For M1, credit the idea that desflurane contains C–F bonds that are difficult to break OR that halothane contains C-Cl bonds which are easy to break. 1 M2 Desflurane / molecules that have fluorine as the only halogen, cause no damage / do not deplete / do not react with the ozone (layer) OR Halothane / chlorine-containing molecules, damage /

1

1